16 State House Station Augusta, Maine 04333

Transportation Research Division

Technical Report 15-03 Bridge-in-a-BackpackTM <u>Task 2.3</u>: Low-Rise Arch Study with Soil-Structure Interaction and Spread Footing Foundation Final Report – January 2015

1. Report No.	2.	3. Recipient's Accession No.				
ME 15-03						
4. Title and Subtitle		5. Report Date				
Bridge-in-a-Backpack TM		January 2015				
	Tasks 2.3: Investigating Alternative Shapes with Varying Radii –					
Low-Rise Arch Study with Soil-Structu	6.					
Footing Foundation						
C C						
7. Author(s) Xenia Rofes P.E.		8. Performing Organization Rep AEWC Report Number 1				
Keenan Goslin P.E.		AEWC Report Nulliber I	J-26-1025D			
Reenan Goshii F.E.						
9. Performing Organization Name and Address		10. Project/Task/Work Unit No).			
University of Maine – Advanced Struct	ures and Composites	Project 17891.00 – Task	2.3			
Center						
		11. Contract © or Grant (G) No				
		Contract # 20111223*28	/8			
12. Sponsoring Organization Name and Address		13. Type of Report and Period	Covered			
Maine Department of Transportation						
		14. Sponsoring Agency Code				
15. Supplementary Notes						
16. Abstract (Limit 200 words)						
16. Abstract (Limit 200 words)						
16. Abstract (Limit 200 words) This report includes fulfillment of Task	2.3 of a multi-task contract	to further enhance concret	e filled FRP tubes, or			
This report includes fulfillment of Task	nvestigation of alternative	shapes for the FRP tubes w	ith varying radii. Task			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i	nvestigation of alternative a e rise (R) of an arch for a c	shapes for the FRP tubes w onstant span (S) with a set	ith varying radii. Task of different earth			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th	nvestigation of alternative a e rise (R) of an arch for a c FE Code) by the University	shapes for the FRP tubes w onstant span (S) with a set of Maine Advanced Struct	ith varying radii. Task of different earth ures and Composites			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte	shapes for the FRP tubes w onstant span (S) with a set of Maine Advanced Struct raction (Clapp and Davids,	ith varying radii. Task of different earth ures and Composites 2011).			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise	shapes for the FRP tubes we onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, to-span (R/S) ratios of 0.3	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise	shapes for the FRP tubes we onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, to-span (R/S) ratios of 0.3	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise	shapes for the FRP tubes we onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, to-span (R/S) ratios of 0.3	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid, and 0.15 was selected. In addition, two respectively.	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid, and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the much as 16%.	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga rise by 50% from 12 ft. to 6	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the much as 16%.	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga rise by 50% from 12 ft. to 6	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, e-to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft of ft. could increase the over	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid, and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the much as 16%.	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga rise by 50% from 12 ft. to 6	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, e-to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft of ft. could increase the over	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the much as 16%. 17. Document Analysis/Descriptors Arch bridges, concrete filled FRP tubes cost, Bridge-in-a-Backpack	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga rise by 50% from 12 ft. to 6	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, -to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft of ft. could increase the over 18. Availability Statement	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft. all bridge cost by as			
This report includes fulfillment of Task the Bridge in a Backpack. Task 2 is an i 2.3 explores the effects of decreasing th covers. It uses the finite element code (I Center (The Center) that takes into cons A parametric study on a set of four brid and 0.15 was selected. In addition, two respectively. For a 40 ft. span bridge, decreasing the much as 16%.	nvestigation of alternative s e rise (R) of an arch for a c FE Code) by the University ideration soil-structure inte ge geometries given by rise sets of cover were investiga rise by 50% from 12 ft. to 6	shapes for the FRP tubes w onstant span (S) with a set of of Maine Advanced Struct raction (Clapp and Davids, e-to-span (R/S) ratios of 0.3 ated for each geometry, 4 ft of ft. could increase the over	ith varying radii. Task of different earth ures and Composites 2011). 0, 0.25, 0.2 ., and 8 ft.			

LOW-RISE ARCH STUDY WITH SOIL-STRUCTURE INTERACTION

AND SPREAD FOOTING FOUNDATION

Prepared for:

Dale Peabody P.E. Director Transportation Research Maine Dept. of Transportation 16 State House Station Augusta, ME 04333-0016

University of Maine's Advanced Structures and Composites Center Report Number: 15-28-1023B

January 15, 2015

Prepared by:

Xemi Pols

Xenia Rofes P.E. Research Engineer

Reviewed by:

Heen yoshi

Keenan Goslin P.E. Structural Engineer

This report shall not be reproduced, except in full, without the written approval of University of Maine's Advanced Structures and Composites Center.

An ISO 17025 accredited testing laboratory, accredited by the International Accreditation Service.

UMaine Advanced Structures and Composites Center 35 Flagstaff Rd University of Maine Orono, ME 04469

Telephone: 207-581-2123 FAX: 207-581-2074 composites@umit.maine.edu www.composites.umaine.edu

TABLE OF CONTENTS

Low-rise arch study with Soil-Structure Interaction	1
and Spread Footing Foundation	1
I. INTRODUCTION	3
II. PARAMETRIC STUDY	3
III. RESULTS AND DISCUSSION Arch and Foundation Force Effects:	
Foundation footing movement	
IV. CASE STUDY	6
V. SUMMARY AND CONCLUSION	8
VI. REFERENCES	0

Low-Rise Arch Study with

Soil-Structure Interaction and Spread Footing Foundation

I. INTRODUCTION

UMaine's Advanced Structures and Composites Center has developed and licensed a hybrid composite arch bridge system. The main structural bridge elements utilize a tubular braided composite laminate that can be bent to a desired geometry. To date, minimum rise to span ratios used are about 20%.

This document is intended to explore the effects of decreasing the rise (R) of an arch for a constant span (S) with a set of different earth covers. It uses the finite element code (FE Code) by the University of Maine Advanced Structures and Composites Center (The Center) that takes into consideration soil-structure interaction (Clapp and Davids, 2011).

II. PARAMETRIC STUDY

For this study, a set of four bridge geometries given by rise-to-span (R/S) ratios of 0.30, 0.25, 0.2 and 0.15 was selected. In addition, two sets of cover were investigated for each geometry, 4 ft., and 8 ft. respectively. Table 1 summarizes the pertinent run matrix selected for this study. The bridge geometry with R/S of 0.3 was selected as a baseline and represents a non-shallow arch, and arches with R/S less than 0.15 are no longer considered arched structures but rather beam-like structures.

Cover	Span>	40 ft.	50 ft.	60 ft.
	R/S	Run ID	Run ID	Run ID
	0.30	1	9	17
4 ft.	0.25	2	10	18
4 11.	0.20	3	11	19
	0.15	4	12	20
	0.30	5	13	21
8 ft.	0.25	6	14	22
0 It.	0.20	7	15	23
	0.15	8	16	24

Table 1 – Arch Run ID Matrix for Analyses

Arch variables and arch constitutive relations were kept constant.

III. RESULTS AND DISCUSSION

ARCH AND FOUNDATION FORCE EFFECTS:

Key results for the arch internal forces are summarized in the proceeding table. It is apparent that the shallower the arch, the more inefficient. Although the internal moments decrease as the arch

becomes shallow, the base negative moments as shown by Max Mu (maximum factored Strength I moment) increases, and so do the shear forces (Max. Vu).

	Span (ft.)	Run ID	R/S	Max. Mu (kip- in)	Max. Pu (kip)	Max. Vu (kips)	M_ ratio	P_ ratio	V_ ratio
		1	0.30	400.5	55.7	8.0	1.0	1.0	1.0
	_	2	0.25	481.3	57.7	10.6	1.2	1.0	1.3
	40	3	0.20	542.3	61.3	14.2	1.4	1.1	1.8
		4	0.15	692.9	66.2	22.5	1.7	1.2	2.8
ff.		9	0.30	741.4	73.5	12.0	1.0	1.0	1.0
Cover = 4 ft.	0	10	0.25	819.3	75.6	15.5	1.1	1.0	1.3
ver	50	11	0.20	888.7	78.9	19.6	1.2	1.1	1.6
C		12	0.15	963.2	84.0	27.3	1.3	1.1	2.3
		21	0.30	1239.8	92.2	17.0	1.0	1.0	1.0
	0	22	0.25	1300.6	94.3	21.9	1.0	1.0	1.3
	60	23	0.20	1362.3	97.7	26.2	1.1	1.1	1.5
		24	0.15	1260.8	104.2	31.8	1.0	1.1	1.9
		5	0.30	310.0	74.1	6.1	1.0	1.0	1.0
	0	6	0.25	374.0	77.6	7.0	1.2	1.0	1.2
	40	7	0.20	458.5	82.5	13.5	1.5	1.1	2.2
		8	0.15	748.4	90.0	25.3	2.4	1.2	4.2
ft.		13	0.30	522.3	96.9	9.2	1.0	1.0	1.0
Cover = 8 ft.	0	14	0.25	594.2	101.0	9.5	1.1	1.0	1.0
ver	50	15	0.20	716.2	105.5	18.6	1.4	1.1	2.0
Co		16	0.15	1027.0	113.5	33.4	2.0	1.2	3.6
		25	0.30	896.6	112.1	13.4	1.0	1.0	1.0
	0	26	0.25	976.9	125.7	13.9	1.1	1.1	1.0
	60	27	0.20	1084.4	130.8	23.4	1.2	1.2	1.7
		28	0.15	1309.0	139.9	38.0	1.5	1.2	2.8

Table 2 - Summary of Factored (Strength I) Arch Forces

The effect is worse the smaller the arch span. It is interesting to note that as long as the R/S ratio is greater than 0.15, the effect is worse for the 4 ft. cover than for the 8 ft. cover, but for R/S =

0.15, the opposite takes place. This is likely due to the soil dead load effect where this flat arch is starting to behave more like a beam.

Table 3 summarizes the service reaction forces at the top of the foundation. The reaction forces have the same trend as in the case of arch internal forces.

	span	Run	Min Ms	Max	Max	M_	P_	V_
	(ft.)	ID	(kip-in)	Ps	Vs	ratio	ratio	ratio
				(kip)	(kips)			
		1	-264.85	75.8	42.2	1.0	1.0	1.00
	0	2	-317.05	71.9	53.6	1.2	0.9	1.27
	40	3	-356.57	67.6	65.3	1.3	0.9	1.56
		4	-466.47	63.1	78.8	1.8	0.8	1.87
ft.		11	-497.23	101.0	54.2	1.0	1.0	1.00
Cover = 4	50	12	-554.56	95.2	68.5	1.1	0.9	1.26
ver	S.	13	-599.64	88.7	83.8	1.2	0.9	1.55
Co		14	-659.95	81.7	100.1	1.3	0.8	1.85
		21	-855.29	129.1	66.9	1.0	1.0	1.00
	60	22	-907.57	120.5	84.3	1.1	0.9	1.26
	9	23	-941.49	111.3	103.5	1.1	0.9	1.63
		24	-889.07	101.4	125.2	1.0	0.8	2.02
		5	-201.09	102.6	60.5	1.0	1.0	1.00
	40	6	-249.43	98.5	77.0	1.2	1.0	1.27
	4	7	-318.21	94.0	90.9	1.6	0.9	1.50
		8	-529.16	89.2	111.7	2.6	0.9	1.84
8 ft.		15	-353.47	134.7	77.1	1.0	1.0	1.00
11	50	16	-414.29	128.7	97.3	1.2	1.0	1.29
Cover =	S	17	-506.56	122.1	115.7	1.4	0.9	1.56
Co		18	-736.42	114.8	140.6	2.1	0.9	1.91
		25	-613.15	170.2	95.2	1.0	1.0	1.00
	60	26	-685.17	161.2	119.7	1.1	0.9	1.27
	9	27	-778.74	151.7	143.4	1.3	0.9	1.54
		28	-949.19	141.7	173.6	1.5	0.8	1.90

Table 3 –	Summary	of Service	Reaction
Table 5 –	Summary	of ber vice	Reaction

FOUNDATION FOOTING MOVEMENT

All arches considered in this study where founded on 4'x4' continuous spread footings for simplicity. Shallow arches have larger foundation thrust, thus engaging the footing passive earth pressure. Depending on foundation/soil parameters, a shallower arch can potentially result in horizontal footing movement. This movement is highly dependent on the friction coefficient assumed at the foundation base, which for this study was set to 0.6.

For all 24 runs considered in this study, arches with R/S greater than 0.2 did not results in foundation movement regardless of the arch span or soil cover. However, Table 4 summarizes the horizontal movement results for the two shallowest arches (R/S of 0.2 and 0.15) at each reaction point. This means that the total bridge movement is twice the values shown in the table, so that for run #4, the bridge total lateral longitudinal movement is 0.44 in. It is apparent that as the span increases, the thrust forces increases, thus increasing the horizontal movement. Note that the horizontal movement increases by a factor of about 4 when the arch rise is decreased from 20% of the span to 15% of the span.

	span	Run	Span	Self	Earth	Total
	(ft.)	ID	(ft.)	Weight	Fill	DL +
				(in.)	(in.)	LL
						(in.)
		3	40	0.000	0.012	0.050
	4 ft.	11	50	0.000	0.039	0.085
0.20	7	23	60	0.000	0.084	0.140
$\mathbf{R}/\mathbf{S} =$		7	40	0.000	0.055	0.075
R	8 ft.	15	50	0.000	0.113	0.147
	~	27	60	0.000	0.196	0.236
		4	40	0.000	0.125	0.220
	4 ft.	12	50	0.000	0.234	0.350
0.15	7	24	60	0.027	0.396	0.562
R/S = 0		8	40	0.000	0.233	0.291
R	8 ft.	16	50	0.000	0.411	0.509
		28	60	0.027	0.662	0.841

Table 4 - Max. Horizontal Foundation Deflections at each end

One more run was done for Run ID #24 with a base friction coefficient of 0.3 versus 0.6. The resulting lateral movement from DL and LL was 1.230 in., or a bit over twice as much as the one shown in Table 4.

Although not part of this study, the effect on the concrete filled FRP tube arches that undergo lateral movement (spreading) at the base should be investigated.

IV. CASE STUDY

It is apparent that a shallower arch will incur additional cost due to the increase of its internal moments and shears, as well as an increase in foundation thrust. Two 40 ft. (480 in.) span arches

UMaine Composites Center 35 Flagstaff Rd University of Maine Orono, ME 04469 are compared in terms of potential increase in overall bridge cost as shown in Figure 1. That is, the arch with a 6 ft. rise (R/S of 0.15 -- run #4) is compared to the more efficient arch with a 12 ft. rise (R/S of 0.3 -- run #1). The arch and foundation moment, axial and shear forces, as well as the foundation movement for run #4 are highlighted in Tables 4 through 6 for ease of reference.

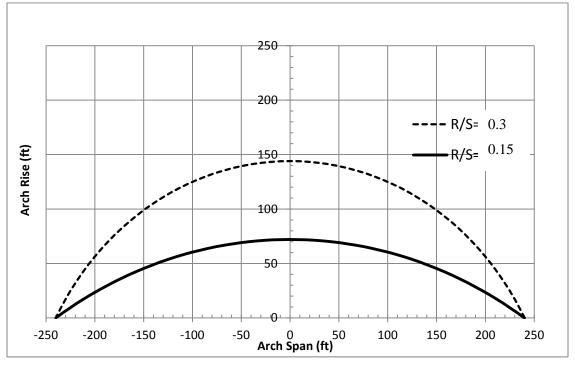


Figure 1 - Arch Geometries for Case Study

When calculating the structure foundations, the following assumptions have been made.

- 1. Foundation height = 4 ft.
- 2. Angle of soil friction = 30 degrees
- 3. Coefficient of base friction = tan (soil angle)=0.58
- 4. Passive pressure coefficient = 2.0 (used for sliding calculations)
- 5. At rest pressure coefficient = 0.45 (used for overturning calculations)
- 6. Allowable bearing pressure coefficient = 10 Tons/sf

Table 5 summarizes the increase in spread footing width that would satisfy design requirements per AASHTO based on LRFD - Strength I design. It is obvious that decreasing the arch rise for a 40 ft. span from 12 ft. to 6 ft. while keeping the same earth cover has a very large impact on the bridge foundations, to the point that a simple spread footing might no longer be considered as a design solution. For a 4 ft. high footing, the footing width would increase from 5.75 ft. (run#1) to 15.5 ft. (run #4) and for a 40 ft. span bridge, this would not be a viable solution. It is likely that a better solution would be to add a shear key to the foundation to resist lateral movement. However, this is also an expensive proposition given that the footing width is still over twice that of run #1.

Run ID	Bridge Rise, R	Footing Width , B	Footing Height, H	Footing X-section BxH	Vol_ ratio
#1	12 ft.	5.75 ft.	4 ft.	23 sf	2.69
#4	6 ft.	15.5 ft.	4 ft.	62 sf	
#1	12 ft.	5.75 ft.	4 ft.	23 sf	2.17
#4	6 ft.	12 ft.	4 ft. + 2ft shear key	50 sf	

 Table 5 – Spread Footing Designed for Case Study Comparison

An attempt to estimate the cost significance of shallow arches is shown in Table 6. The incremental cost (Δ _cost) is based on a spread footing foundation and the fact that the critical arch failure load is due to axial bending interaction. Additional construction costs, such as additional excavation costs or a change in foundation type have not been considered in this cost analysis. The base total bridge cost (including demolition, wingwalls, foundation costs, etc..) used for comparison has been assumed at \$300/sf for the low end, and \$500/sf for the high end, calculated as total construction bridge cost, divided by arch center-to-center span, and divided by total bridge width.

 Table 6 - Incremental Cost for Lowrise Arch Bridge Comparison

	$\Delta _cost_$	$\Delta _cost_$
	Low (%)	High (%)
FRP Arch	+5.6	+9.3
Deck	-0.3	-0.5
Foundation	+4.3	+7.2
	+9.6	+16.0

It is apparent that the Foundation and FRP arch cost is similar in magnitude. For a 40 ft. span bridge, decreasing the rise by 50% from 12 ft. to 6 ft. could increase the overall bridge cost by as much as 16%.

V. SUMMARY AND CONCLUSION

The design feasibility low-rise arches have been studied for three bridges with rise to span ratios varying from 0.3 to 0.15. The previously developed code package was used for all the numerical runs to determine the trends. Arch forces as well as foundation thrusts increased. A case study for the 40 ft. span bridges was used to estimate the relative cost incurred from decreasing the bridge rise by 50%, and the results suggest that they are in the order of 9 to 16 %.

Future work for low rise arches should include the effect on the concrete filled FRP tube arches that undergo lateral movement (spreading) at the base.

VI. REFERENCES

- Clapp, J.D. and Davids, W.G. (2011). *Simplified Modeling to Assess Soil-Structure Interaction*, AEWC Report No. 11-30.
- Clapp, J.D. and Davids, W.G. (2011). *Development of Enhanced Software for Analysis of soil-Structure Interaction and Foundation Design*, AEWC Report No. 12-xx.
- Das, B. M. (2004). *Principles of Foundation Engineering* (5th ed.). Brooks/Cole Thomson Learning, Inc. USA.
- MathWorks (2009). *Programming Fundamentals, MATLAB Version 7.9 (R2009b)*, The MathWorks, Inc. Natick, MA.